题目内容

如图,A、B、C在同一直线上,且△ABD,△BCE都是等边三角形,AE交BD于点M,CD交BE于点N,求证:
(1)∠BDN=∠BEM;
(2)△BMN是等边三角形.
考点:全等三角形的判定与性质,等边三角形的判定与性质
专题:证明题
分析:(1)由△ABD与△BCE都为等边三角形,利用等边三角形的性质得到两条边对应相等,两个角相等都为60°,利用SAS即可得到△ABE与△DBC全等,进而得到∠BDN=∠BEM;
(2)由第一问△ABE与△DBC全等,利用全等三角形的对应角相等得到一对角相等,再由∠ABD=∠EBC=60°,利用平角的定义得到∠MBE=∠NBC=60°,再由EB=CB,利用ASA可得出△EMB与△CNB全等,利用全等三角形的对应边相等得到MB=NB,再由∠MBE=60°,利用有一个角为60°的等腰三角形为等边三角形可得出△BMN为等边三角形.
解答:证明:(1)∵等边△ABD和等边△BCE,
∴AB=DB,BE=BC,∠ABD=∠EBC=60°,
∴∠ABE=∠DBC=120°,
在△ABE和△DBC中,
AB=DB 
∠ABE=∠DBC 
BE=BC 

∴△ABE≌△DBC(SAS)
∴∠BDN=∠BEM;
(2)∵△ABE≌△DBC,
∴∠AEB=∠DCB,
又∵∠ABD=∠EBC=60°,
∴∠MBE=180°-60°-60°=60°,
即∠MBE=∠NBC=60°,
在△MBE和△NBC中,
∠AEB=∠DCB 
EB=CB 
∠MBE=∠NBC 

∴△MBE≌△NBC(ASA),
∴BM=BN,∠MBE=60°,
∴△BMN为等边三角形.
点评:此题考查了等边三角形的判定与性质,以及全等三角形的判定与性质,熟练掌握判定与性质是解本题的关键.同时做第二问时注意利用第一问已证的结论.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网