题目内容

如图,在△ABC中,AB=AC=5,P是BC边上除B、C点外的任意一点,则代数式AP2+PB•PC等于(  )
A、25B、15C、20D、30
考点:勾股定理,等腰三角形的性质
专题:计算题
分析:首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA2=PD2+AD2,AD2+BD2=AB2,然后由AP2+PB•PC=AP2+(BD+PD)(CD-PD),即可求得答案.
解答:解:过点A作AD⊥BC于D,
∵AB=AC=5,∠ADP=∠ADB=90°,
∴BD=CD,根据勾股定理得:PA2=PD2+AD2,AD2+BD2=AB2
∴AP2+PB•PC=AP2+(BD+PD)(CD-PD)=AP2+(BD+PD)(BD-PD)=AP2+BD2-PD2=AP2-PD2+BD2=AD2+BD2=AB2=25.
故选A
点评:此题考查了勾股定理,以及等腰三角形的性质,熟练掌握勾股定理是解本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网