题目内容
【题目】已知
、
是关于
的方程
的两个不相等的实数根.
(1)求实数
的取值范围;
(2)已知等腰
的一边长为7,若
、
恰好是
另外两边长,求这个三角形的周长.
【答案】(1)m>2; (2)17
【解析】试题分析:(1)由根的判别式即可得;
(2)由题意得出方程的另一根为7,将x=7代入求出x的值,再根据三角形三边之间的关系判断即可得.
试题解析:解:(1)由题意得△=4(m+1)2﹣4(m2+5)=8m-16>0,解得:m>2;
(2)由题意,∵x1≠x2时,∴只能取x1=7或x2=7,即7是方程的一个根,将x=7代入得:49﹣14(m+1)+m2+5=0,解得:m=4或m=10.
当m=4时,方程的另一个根为3,此时三角形三边分别为7、7、3,周长为17;
当m=10时,方程的另一个根为15,此时不能构成三角形;
故三角形的周长为17.
练习册系列答案
相关题目
【题目】射击队为从甲、乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成绩 | 中位数 | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)请计算甲六次测试成绩的方差;
(3)若乙六次测试成绩方差为
,你认为推荐谁参加比赛更合适,请说明理由.