题目内容


如图,△ABC中,AC=BC,∠ACB=90°,点D在AB上,E在BC上,且AD=BE,BD=AC,连接DE.

(1)求证:△ACD≌△BDE;

(2)求∠BED的度数;

(3)若过E作EF⊥AB于F,BF=1,直接写出CE的长.


【考点】全等三角形的判定与性质.

【分析】(1)根据SAS证明△ACD≌△BDE即可;

(2)根据全等三角形得出AC=BD,进而得出BD=BC,利用角的计算即可解答;

(3)过E作EF⊥AB于F,DH⊥BC于H,根据等腰直角三角形的性质求出EF的长,根据题意求出∠CED=∠DEF,根据角平分线的性质求出EH=EF,根据等腰三角形的性质得到答案.

【解答】证明:(1)在△ACD与△BDE中,

∴△ACD≌△BDE(SAS),

(2)∵△ACD≌△BDE,

∴AC=BD,CD=DE,

∵AC=BC,

∴BD=BC,

∴∠BCD=67.5°,

∴∠CED=∠BCD=67.5°,

∴∠BED=112.5°;

(3)过E作EF⊥AB于F,DH⊥BC于H,

∵EF⊥AB,∠B=45°,

∴EF=BF=1,

∵∠FEB=45°,∠CED=67.5°,

∴∠DEF=67.5°,

∴∠CED=∠DEF,又DH⊥BC,EF⊥AB,

∴EH=EF=1,

∵DC=DE,DH⊥BC,

∴CE=2EH=2.

【点评】本题考查的是全等三角形的判定和性质、角平分线的性质以及等腰三角形的性质,掌握全等三角形的判定定理和性质定理、等腰三角形的三线合一是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网