题目内容
7.为了举行班级晚会,小明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每个22元.如果购买金额不超过200元,购买的球拍为x个,那么x的最大值是( )| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
分析 设购买球拍x个,根据乒乓球每个1.5元,球拍每个22元,购买的金额不超过200元,列出不等式,求解即可.
解答 解:设购买球拍x个,依题意得:
1.5×20+22x≤200,
解之得:x≤7$\frac{8}{11}$,
∵x取整数,
∴x的最大值为7;
故选A.
点评 此题考查了一元一次不等式的应用,解决问题的关键是读懂题意,依题意列出不等式进行求解.
练习册系列答案
相关题目
17.
如图,一副分别含有30°和45°角的两个直角三角板,拼成如图所示,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是( )
| A. | 10° | B. | 15° | C. | 25° | D. | 30° |
18.已知2x+4y=0,且x≠0,则y与x的比是( )
| A. | -$\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | -2 | D. | 2 |
15.现有43本书,计划分给各学习小组,若每组8本有剩余,每组9本却不足,则学习小组共有( )
| A. | 4个 | B. | 5个 | C. | 6个 | D. | 7个 |
2.
如图,长方形木板的长为4cm,宽为3cm,在桌面上做无滑动的翻滚(顺时针方向),木板的顶点A的位置变化为A→A1→A2,其中第二次翻滚被桌面上一小木块挡住,使木板沿A2C与桌面成30°角,则点A翻滚到A2位置时,共走过的路径长为( )
| A. | $\frac{10}{3}$πcm | B. | $\frac{25}{6}$πcm | C. | $\frac{11}{3}$πcm | D. | $\frac{7}{2}$πcm |
12.去年某校有1500人参加中考,为了了解他们的数学成绩,从中抽取了200名考生的数学成绩,其中有60名考生的数学成绩达到优秀,那么该校考生数学成绩达到优秀的约有( )
| A. | 400名 | B. | 450名 | C. | 475名 | D. | 500名 |
19.
如图用6个同样大小的立方体摆成的几何体,将立方体①移走后,所得几何体与原来几何体的( )
| A. | 主视图改变,左视图改变 | B. | 俯视图不变,左视图不变 | ||
| C. | 俯视图改变,左视图改变 | D. | 主视图改变,左视图不变 |
17.六边形的对角线共有( )
| A. | 6条 | B. | 8条 | C. | 9条 | D. | 18条 |