题目内容
已知双曲线y=-
,则下列选项中,阴影部分面积最小的是( )
| 2 |
| x |
| A、 |
| B、 |
| C、 |
| D、 |
考点:反比例函数系数k的几何意义
专题:
分析:根据反比例函数系数k的几何意义对各选项进行逐一分析即可得出答案.
解答:
解:A、S阴影=
•|-2|×2=2,
B、S阴影=
•|-2|×2=2,
C、S阴影=
•|-2|×2=2,
D、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,
则S阴影=S△OAM+S阴影梯形ABNM-S△OBN=
×2+
×(2+1)×1-
×2=
;
故选D.
| 1 |
| 2 |
B、S阴影=
| 1 |
| 2 |
C、S阴影=
| 1 |
| 2 |
D、如图所示,分别过点MN作MA⊥x轴,NB⊥x轴,
则S阴影=S△OAM+S阴影梯形ABNM-S△OBN=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
故选D.
点评:本题考查的是反比例函数系数k的几何意义,在反比例函数的图象上任意一点象坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是
|k|且保持不变.
| 1 |
| 2 |
练习册系列答案
相关题目
如图的几何体,其左视图均为圆的是( )

| A、①② | B、②③ | C、③④ | D、①④ |
下列命题为真命题的是( )
| A、三角形的中位线把三角形的面积分成相等的两部分 |
| B、对角线相等且相互平分的四边形是正方形 |
| C、对角形互相垂直的矩形是正方形 |
| D、一组对边平行、另一组对边相等的四边形一定是等腰梯形 |
计算(b2a)3的结果是( )
| A、a3b3 |
| B、b5a3 |
| C、a3b6 |
| D、ab6 |
一个长方形健身活动区的长和宽分别是20m和15m,在它四周外围环绕着宽度相等的小路,已知小路的面积为246m2,若设小路的宽为xm,则x满足的方程为( )
| A、(20+2x)(15+2x)=20×15+246 |
| B、(20-2x)(15-2x)=20×15-246 |
| C、(20+2x)(15+2x)=20×15-246 |
| D、(20-2x)(15-2x)=20×15+246 |