题目内容


若实数a,b满足a+b2=1,则a2+b2的最小值是      .                       


 .                                                                                                

【考点】配方法的应用;非负数的性质:偶次方.                                         

【分析】由a+b2=1,得出b2=1﹣a,代入得到a2+b2=a2+1﹣a,利用配方法即可求解.                 

【解答】解:∵a+b2=1,                                                                         

∴b2=1﹣a,                                                                                       

∴a2+b2=a2+1﹣a=(a﹣2+,                                                        

∴当a=时,a2+b2有最小值.                                                              

故答案为.                                                                                      

【点评】本题考查了配方法的应用,非负数的性质,将b2=1﹣a代入得到a2+b2=a2+1﹣a是解题的关键.                

                                                                                                       


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网