题目内容

12.已知:?ABCD的对角线AC与BD相交于点O,过点O的直线与AD,BC分别相交于点E,F,求证:OE=OF.

分析 由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.

解答 证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠EAO=∠FCO,
∵OE⊥AD,OF⊥BC,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,$\left\{\begin{array}{l}{∠EAO=∠FCO}&{\;}\\{∠AEO=∠CFO}&{\;}\\{OA=OC}&{\;}\end{array}\right.$,
∵∴△AEO≌△CFO(AAS),
∴OE=OF.

点评 此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形对角线互相平分定理的应用是解此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网