题目内容
12.分析 由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,又由OE⊥AD,OF⊥BC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
解答 证明:∵四边形ABCD是平行四边形,
∴OA=OC,AD∥BC,
∴∠EAO=∠FCO,
∵OE⊥AD,OF⊥BC,
∴∠AEO=∠CFO=90°,
在△AEO和△CFO中,$\left\{\begin{array}{l}{∠EAO=∠FCO}&{\;}\\{∠AEO=∠CFO}&{\;}\\{OA=OC}&{\;}\end{array}\right.$,
∵∴△AEO≌△CFO(AAS),
∴OE=OF.
点评 此题考查了平行四边形的性质与全等三角形的判定与性质.此题比较简单,注意掌握平行四边形对角线互相平分定理的应用是解此题的关键.
练习册系列答案
相关题目
20.在外打工的小王,利用打工赚来的积蓄,准备在家乡创办小型零部件加工企业,该零部件按规格分为5种型号,据调研显示,每种型号的日产量见下表所列(每种型号的产品每天都能销售完).
由于刚创办,该企业只能生产一种型号的产品.
(1)求y与x的函数关系式.
(2)已知销售单价z元与型号x之间满足x=10x+60,小王为了扩大日销售额,应选择生产那种型号的零件?并求出当日销售额ρ的最大值.
(3)若生产每种型号产品的每件成本q元与x满足关系:q=4x+36,且日销售额不大于7000元时,需缴纳销售额5%的税收,且销售额超过7000元的需缴纳销售额10%的税收,小王生产哪一种型号可使每日获得的利润最高?
注:日销售额=日产量×销售单价;每日利润=日产量×(产品单价-成本)-税收.
| 产品型号x | 1 | 2 | 3 | 4 | 5 |
| 日产量y(件) | 100 | 90 | 80 | 70 | 60 |
(1)求y与x的函数关系式.
(2)已知销售单价z元与型号x之间满足x=10x+60,小王为了扩大日销售额,应选择生产那种型号的零件?并求出当日销售额ρ的最大值.
(3)若生产每种型号产品的每件成本q元与x满足关系:q=4x+36,且日销售额不大于7000元时,需缴纳销售额5%的税收,且销售额超过7000元的需缴纳销售额10%的税收,小王生产哪一种型号可使每日获得的利润最高?
注:日销售额=日产量×销售单价;每日利润=日产量×(产品单价-成本)-税收.
7.蜗牛从树根沿着树干往上爬,白天爬上4米,夜间滑下3米,那么高7米的树,蜗牛爬到树顶要( )
| A. | 3天 | B. | 4天 | C. | 5天 | D. | 6天 |