题目内容
一个多边形内角和是1080°, 则这个多边形的边数为( )
A. 6 B. 7 C. 8 D. 9
解方程与计算:
(1) (2)
(3) (4)
如图2的三幅图分别是从不同方向看图1所示的工件立体图得到的平面图形,(不考虑尺寸)其中正确的是( )
A. ①② B. ①③ C. ②③ D. ③
如图,在?ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数为__.
如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为( )
A. 60° B. 70° C. 80° D. 90°
已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=600,求:∠BHF的度数.
如图,计划把河水引到水池A中,先引AB⊥CD,垂足为B,然后 沿AB开渠,能使所开的渠道最短, 这样设计的依据是_______________.
邻边不相等的平行四边形纸片,剪去一个菱形,余下的一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;…依此类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,?ABCD中,若AB=1,BC=2,则?ABCD为1阶准菱形.
(1)猜想与计算:
邻边长分别为3和5的平行四边形是_______阶准菱形;已知?ABCD的邻边长分别为a,b(a>b),满足a=8b+r,b=5r,请写出?ABCD___________阶准菱形.
(2)操作与推理:
小明为了剪去一个菱形,进行了如下操作:如图2,把?ABCD沿BE折叠(点E在AD上),使点A落在BC边上的点F处,得到四边形ABFE.请证明四边形ABFE是菱形.
如图,在平面直角坐标系中,直线分别交x轴,y轴于点A,C,点D(m,4)在直线AC上,点B在x轴正半轴上,且OB=2OC.点E是y轴上任意一点,连结DE,将线段DE按顺时针旋转90°得线段DG,作正方形DEFG,记点E为(0,n).
(1)求点D的坐标;
(2)记正方形DEFG的面积为S,
① 求S关于n的函数关系式;
② 当DF∥x轴时,求S的值;
(3)是否存在n的值,使正方形的顶点F或G落在△ABC的边上?若存在,求出所有满足条件的n的值;若不存在,说明理由.