题目内容
已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H ,∠AGE=600,求:∠BHF的度数.
若规定“*”的运算法则为:a*b=ab-1,则2*3= _______.
定义:有一个内角为90°,且对角线相等的四边形称为准矩形.
(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD= ;
②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是 ;(整点指横坐标、纵坐标都为整数的点)
(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;
(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是 .
若一个菱形的两条对角线长分别是5cm和10cm,则与该菱形面积相等的正方形的边长是( )
A. 6cm B. 5cm C. cm D. 7.5cm
一个多边形内角和是1080°, 则这个多边形的边数为( )
A. 6 B. 7 C. 8 D. 9
在平面直角坐标系中,一只蜗牛从原点O出发,按向上、向右、向下、向右的方向依次移动,每次移动2个单位长度,其行走路线如图所示,则点A2018的坐标为__________.
①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ; ④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )
A. 、1个 B. 2个 C. 3个 D. 4个
高斯函数[x],也称为取整函数,即[x]表示不超过x的最大整数.
例如:[2.3]=2,[﹣1.5]=﹣2.
则下列结论:
①[﹣2.1]+[1]=﹣2;
②[x]+[﹣x]=0;
③若[x+1]=3,则x的取值范围是2≤x<3;
④当﹣1≤x<1时,[x+1]+[﹣x+1]的值为0、1、2.
其中正确的结论有________(写出所有正确结论的序号).
如图,湖中的小岛上有一标志性建筑物,其底部为A,某人在岸边的B处测得A在B的北偏东30°的方向上,然后沿岸边直行4公里到达C处,再次测得A在C的北偏西45°的方向上(其中A,B,C在同一平面上).如果某人要从BC路上的某点D去A点,要求AD是距离最短的路线.(精确到0.1公里,,).
(1)在图中作出点D,并求最短距离;
(2)求BD的长.