题目内容
15.分析 由平行四边形的性质得出AB∥CD,AB=CD,由已知条件得出AM∥CN,AM=CN,证出四边形AMCN是平行四边形,由等腰三角形的性质得出∠CMA=90°,即可得出四边形AMCN是矩形.
解答 证明:∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD,
∵M、N分别是AB和CD的中点,
∴AM=BM,AM∥CN,AM=CN,
∴四边形AMCN是平行四边形,
又∵AC=BC,AM=BM,
∴CM⊥AB,
∴∠CMA=90°,
∴四边形AMCN是矩形.
点评 本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的性质;熟练掌握平行四边形的性质,由等腰三角形的性质得出CM⊥AB是解决问题的关键.
练习册系列答案
相关题目
3.若直角三角形的周长为30cm,且一条直角边为5cm,则另一条直角边长为( )
| A. | 5cm | B. | 10cm | C. | 12cm | D. | 13cm |