题目内容

如图,点A是函数y=
2
x
(x>0)图象上任意一点,过点A分别作x,y轴平行线交函数y=
1
x
(x>0)图象于点B、C,过C点作x轴的平行线交函数y=
2
x
图象于点D.
(1)设A点横坐标为a,试用a表示B、C点坐标.
(2)求四边形ABCD的面积.
考点:反比例函数图象上点的坐标特征,反比例函数系数k的几何意义
专题:
分析:(1)设A点的横坐标为a,由AC∥y轴,AB∥x轴,则C点坐标为(a,
1
a
),B点的纵坐标为
2
a
,把y=
2
a
代入y=
1
x
即可求得B点坐标为(
a
2
2
a
);
(2)由CD∥x轴,求得D的坐标,即可求得AB、AC、CD的长,然后根据S四边形ABCD=S△ABC+S△ACD即可求得四边形ABCD的面积.
解答:解:(1)设A点的横坐标为a,把x=a代入y=
2
x
得y=
2
a
,则点A的坐标为(a,
2
a
),
∵AC∥y轴,AB∥x轴,
∴C点坐标为(a,
1
a
),B点的纵坐标为
2
a

2
a
=
1
x

解得x=
a
2

∴B点坐标为(
a
2
2
a
);

(2)∵C点坐标为(a,
1
a
),CD∥x轴,
∴D点纵坐标为
1
a

1
a
=
2
x
,解得x=2a,
∴D的坐标为(2a,
1
a

∵AB=a-
a
2
=
a
2
,AC=
2
a
-
1
a
=
1
a
,CD=2a-a=a,
∴S四边形ABCD=S△ABC+S△ACD=
1
2
AB•AC+
1
2
AC•CD=
1
2
AC(AB+CD)=
1
2
×
1
a
×(
a
2
+a)=
3
4
点评:本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足反比例函数图象的解析式;平行于x轴的直线上的所有点的纵坐标相同;平行于y轴的直线上的所有点的横坐标相同;
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网