题目内容

已知抛物线y=ax2+bx+c的对称轴为x=2,且经过点(1,4)和点(5,0),则该抛物线的解析式为__________.

y=-0.5x+2x-2.5 【解析】∵抛物线对称轴是直线x=2且经过点A(5,0), 由抛物线的对称性可知:抛物线还经过点(?1,0), 设抛物线的解析式为y=a(x?x1)(x?x2)(a≠0), 即:y=a(x+1)(x?5), 把(1,4)代入得:4=?8a, ∴a=?. ∴抛物线的解析式为:y=?x2+2x+. 故答案为:y=?x2+2x+...
练习册系列答案
相关题目

在同一直角坐标系中,函数y=kx2﹣k和y=kx+k(k≠0)的图象大致是(  )

A. B. C. D.

D 【解析】试题分析: A、由一次函数y=kx+k的图象可得:k>0,此时二次函数y=kx2﹣kx的图象应该开口向上,错误; B、由一次函数y=kx+k图象可知,k>0,此时二次函数y=kx2﹣kx的图象顶点应在y轴的负半轴,错误; C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误; D、正确. 故选:D.

形状相同的抛物线解析式为(  )

A. y=

B.

C.

D.

D 【解析】抛物线的形状只与a有关,a相等,形状就相同,∴中,a=2. 故选:D.

分式方程去分母时,两边都乘以________.

(x+1)(x-1)) 【解析】∵分式方程 可化为: , ∴去分母时,方程两边应都乘以: .

―抛物线与x轴的交点是A(-2,0),B(1,0),且经过点C(2,8).

(1)求该抛物线的解析式;

(2)求该抛物线的顶点坐标.

(1) y=2x2+2x-4(2)(-,- ) 【解析】分析:(1)因为已知抛物线与x轴两交点坐标,则设交点式y=a(x+2)(x-1,然后把c(2,8代入求出a即可;(2)把(1)中的函数解析式转化为顶点式,可以直接得到答案. 本题解析: (1)设这个抛物线的解析式为y=ax2+bx+c.将A(-2,0),B(1,0),C(2,8)三点代入,得解这个方程组,得∴所求抛物线的解析...

如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A处观测到灯塔C在北偏西60°方向上,航行1小时到达B处,此时观察到灯塔C在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据: ≈1.732)

17. 【解析】试题分析:过点C作CD⊥AB于点D,则若该船继续向西航行至离灯塔距离最近的位置为CD的长度,利用锐角三角函数关系进行求解即可. 试题解析:如图,过点C作CD⊥AB于点D, AB=20×1=20(海里),∵∠CAF=60°,∠CBE=30°,∴∠CBA=∠CBE+∠EBA=120°,∠CAB=90°﹣∠CAF=30°,∴∠C=180°﹣∠CBA﹣∠CAB=30°,∴...

四边形ABCD中,若∠A+∠C+∠D=280°,则∠B的度数为( )

A. 80° B. 90° C. 170° D. 20°

A 【解析】试题分析:四边形的内角和为360°, ∴∠B=360°-(∠A+∠C+∠D) =360°-280° =80°, 故选A.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网