题目内容

9.如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC于点E,F,G,连接ED,DG.请判断四边形EBGD的形状,并说明理由.

分析 结论四边形EBGD是菱形.只要证明BE=ED=DG=GB即可.

解答 解:四边形EBGD是菱形.
理由:∵EG垂直平分BD,
∴EB=ED,GB=GD,
∴∠EBD=∠EDB,
∵∠EBD=∠DBC,
∴∠EDF=∠GBF,
在△EFD和△GFB中,
$\left\{\begin{array}{l}{∠EDF=∠GBF}\\{∠EFD=∠GFB}\\{DF=BF}\end{array}\right.$,
∴△EFD≌△GFB,
∴ED=BG,
∴BE=ED=DG=GB,
∴四边形EBGD是菱形.

点评 本题考查菱形的判定和性质、角平分线的性质、垂直平分线的性质、全等三角形的性质和判定等知识,解题的关键是求出△EFD≌△GFB.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网