题目内容
4.分析 根据角平分线上的点到角的两边的距离相等可得DE=DF,再根据等角的余角相等可得∠EDO=∠FDO,然后根据等腰三角形三线合一的性质可得DO⊥EF,从而得到AD⊥EF,从而证得结论.
解答 证明:∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DE=DF,∠EDO=∠FDO,
在△DEF中,DE=DF,∠EDO=∠FDO,
∴DO⊥EF,
∴AD⊥EF.
∴E,F关于AD对称.
点评 本题考查了角平分线上的点到角的两边的距离相等等的性质,等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.
练习册系列答案
相关题目