题目内容

在综合实践活动课中,王老师出了这样一道题:
如图1,在矩形ABCD中,M是BC的中点,过点M作ME∥AC交BD于点E,作MF∥BD交AC于点F.求证:四边形OEMF是菱形.
做完题后,同学们按照老师的要求进行变式或拓展,提出新的问题让其它同学解答.
(1)小明同学说:“我把条件中的‘矩形ABCD’改为‘菱形ABCD’,如图2所示,发现四边形OEMF是矩形.”请给予证明;
(2)小芳同学说:“我把条件中的‘点M是BC的中点’改为‘点M是BC延长线上的一个动点’,发现点F落在AC的延长线上,如图3所示,此时OB、ME、MF三条线段之间存在某种数量关系.”请你写出这个结论,并说明理由.
考点:四边形综合题
专题:
分析:(1)首先证得四边形OEMF是平行四边形,然后利用菱形的对角线互相垂直证得∠EOF=90°,利用有一个角是直角的平行四边形是矩形证得结论;
(2)根据四边形OEMF是平行四边形,得到OE=MF,根据四边形ABCD是矩形,得到OB=
1
2
BD,OC=
1
2
AD,且AC=BD,从而得到OB=OC,进一步得到BE=ME,从而证得结论OB=BE-OE=ME-MF.
解答:(1)证明:∵ME∥AC,MF∥BD,
∴四边形OEMF是平行四边形.
又∵四边形ABCD是菱形,
∴AC⊥BD,即∠EOF=90°,
∴四边形OEMF是矩形.

(2)结论:OB=ME-MF.
理由如下:∵ME∥AC,MF∥BD,
∴四边形OEMF 是平行四边形,
∴OE=MF,
又∵四边形ABCD是矩形,
∴OB=
1
2
BD,OC=
1
2
AD,且AC=BD,
∴OB=OC,
∴∠OBC=∠OCB,
由ME∥AC可知,∠OCB=∠EMB,
∴BE=ME,
∴OB=BE-OE=ME-MF.
点评:本题考查了矩形的性质及判断、菱形的性质、平行四边形的性质及判定,涉及的知识点比较多,较复杂,但难度不算很大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网