题目内容

阅读材料:求1+2+22+23+24+…+22013的值.
解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:
2S=2+22+23+24+25+…+22013+22014
将下式减去上式得2S-S=22014-1
S=22014-1
1+2+22+23+24+…+22013=22014-1
请你仿照此法计算:
11+2+22+23+24+…+210
21+3+32+33+34+…+3n(其中n为正整数).

 

【答案】

1211-1?? 23n+1-1

【解析】

解:(1)设S=1+2+22+23+24+…+210
将等式两边同时乘以22S=2+22+23+24+…+210+211
将下式减去上式得:2S-S=211-1,即S=211-1
1+2+22+23+24+…+210=211-1
2)设S=1+3+32+33+34+…+3n
两边乘以3得:3S=3+32+33+34+…+3n+3n+1
下式减去上式得:3S-S=3n+1-1,即S=3n+1-1),
1+3+32+33+34+…+3n=3n+1-1).

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网