题目内容

17.解方程组:
(1)$\left\{\begin{array}{l}{3x-y=7}\\{x+3y=-1}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3(x+y)-4(x-y)=2}\\{\frac{x+y}{2}+\frac{x-y}{6}=1}\end{array}\right.$.

分析 (1)方程组利用加减消元法求出解即可;
(2)方程组整理后,利用加减消元法求出解即可.

解答 解:(1)$\left\{\begin{array}{l}{3x-y=7①}\\{x+3y=-1②}\end{array}\right.$,
①×3得:9x-3y=21③,
②+③得:10x=20,
解得:x=2,
代入①得:y=-1,
则原方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(2)方程组整理得:$\left\{\begin{array}{l}{-x+7y=2①}\\{2x+y=3②}\end{array}\right.$,
①×2+②得:15y=7,
解得:y=$\frac{7}{15}$,
把y=$\frac{7}{15}$代入①得:x=$\frac{19}{15}$,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{19}{15}}\\{y=\frac{7}{15}}\end{array}\right.$.

点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网