题目内容

18.方程组$\left\{\begin{array}{l}{x+y+z=26}\\{x-y=1}\\{2x-y+z=18}\end{array}\right.$的解是$\left\{\begin{array}{l}{x=10}\\{y=9}\\{z=7}\end{array}\right.$.

分析 用加减消元法将三元一次方程组转化成二元一次方程组求解即可.

解答 解:$\left\{\begin{array}{l}{x+y+z=26①}\\{x-y=1②}\\{2x-y+z=18③}\end{array}\right.$,
①-③得,-x+2y=8④,
③④组成方程组得$\left\{\begin{array}{l}{x-y=1}\\{-x+2y=8}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=10}\\{y=9}\end{array}\right.$,
代入①得,10+9+z=26,
解得:z=7,
所以原方程组的解为$\left\{\begin{array}{l}{x=10}\\{y=9}\\{z=7}\end{array}\right.$.
故答案为:$\left\{\begin{array}{l}{x=10}\\{y=9}\\{z=7}\end{array}\right.$.

点评 此题考查解三元一次方程组,掌握逐步消元的思想是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网