题目内容
【题目】某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:
(1)求y与x的函数解析式(也称关系式);
(2)求这一天销售西瓜获得的利润的最大值.
![]()
【答案】(1)y与x的函数解析式为
;(2)这一天销售西瓜获得利润的最大值为1250元.
【解析】
(1)当6
x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;
(2))设利润为w元,当6≦x≤10时,w=-200
+1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.
(1)当6
x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),
∴
,
解得
,
∴当6
x≤10时, y=-200x+2200,
当10<x≤12时,y=200,
综上,y与x的函数解析式为
;
(2)设利润为w元,
当6
x≤10时,y=-200x+2200,
w=(x-6)y=(x-6)(-200x+200)=-200
+1250,
∵-200<0,6≦x≤10,
当x=
时,w有最大值,此时w=1250;
当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,
∴200>0,
∴w=200x-1200随x增大而增大,
又∵10<x≤12,
∴当x=12时,w最大,此时w=1200,
1250>1200,
∴w的最大值为1250,
答:这一天销售西瓜获得利润的最大值为1250元.
【题目】某校为提高学生体考成绩,对全校300名九年级学生进行一分种跳绳训练.为了解学生训练效果,学校体育组在九年级上学期开学初和学期末分别对九年级学生进行一分种跳绳测试,学生成绩均为整数,满分20分,大于18分为优秀.现随机抽取了同一部分学生的两次成绩进行整理、描述和分析.(成绩得分用x表示,共分成五组:A.x<13,B.13≤x<15,C.15≤x<17,D.17≤x<19,E.19≤x≤20)
开学初抽取学生的成绩在D组中的数据是:17,17,17,17,17,18,18.
![]()
学期末抽取学生成绩统计表
学生成绩 | A组 | B组 | C组 | D组 | E组 |
人数 | 0 | 1 | 4 | 5 | a |
分析数据:
平均数 | 中位数 | 众数 | |
开学初抽取学生成绩 | 16 | b | 17 |
学期末抽取学生成绩 | 18 | 18.5 | 19 |
根据以上信息,解答下列问题:
(1)直接写出图表中a、b的值,并补全条形统计图;
(2)假设该校九年级学生都参加了两次测试,估计该校学期末成绩优秀的学生人数比开学初成绩优秀的学生人数增加了多少?
(3)小莉开学初测试成绩16分,学期末测试成绩19分,根据抽查的相关数据,请选择一个合适的统计量评价小莉的训练效果.