题目内容

在平面直角坐标系中,抛物线y=ax2﹣5ax+4a与x轴交于A、B(A点在B点的左侧)与y轴交于点C.

(1)如图1,连接AC、BC,若△ABC的面积为3时,求抛物线的解析式;

(2)如图2,点P为第四象限抛物线上一点且在直线BC下方,连接PC,若∠BCP=2∠ABC时,求点P的横坐标;

(3)如图3,在(2)的条件下,点F在AP上,过点P作PH⊥x轴于H点,点K在PH的延长线上,AK=KF,∠KAH=∠FKH,PF=﹣4a,连接KB并延长交抛物线于点Q,求PQ的长.

(1)抛物线的解析式为y=﹣x2+x﹣2;(2)点P的横坐标为6;(3)QP=7. 【解析】试题分析:(1)通过解方程ax2-5ax+4a=0可得到A(1,0),B(4,0),然后利用三角形面积公式求出OC得到C点坐标,再把C点坐标代入y=ax2-5ax+4a中求出a即可得到抛物线的解析式; (2)过点P作PH⊥x轴于H,作CD⊥PH于点H,如图2,设P(x,ax2-5ax+4a),则...
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网