题目内容

19.设方程4x2-7x-3=0的两根为x1、x2,不解方程,求下列各式的值:
(1)${{x}_{1}}^{2}+{{x}_{2}}^{2}$
(2)(x1-3)(x2-3)
(3)$\frac{{x}_{2}}{{x}_{1}+x}+\frac{{x}_{1}}{{x}_{2}+1}$
(4)|x1-x2|

分析 先根据根与系数的关系得到x1+x2=$\frac{7}{4}$,x1x2=-$\frac{3}{4}$,再利用代数式变形得到${{x}_{1}}^{2}+{{x}_{2}}^{2}$=(x1+x22-2x1x2,(x1-3)(x2-3)=x1x2-3(x1+x2)+9,$\frac{{x}_{2}}{{x}_{1}+x}+\frac{{x}_{1}}{{x}_{2}+1}$=${\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}+2}{{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}+1}}_{\;}$,|x1-x2|=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$,然后利用整体代入的方法计算.

解答 解:根据题意得x1+x2=$\frac{7}{4}$,x1x2=-$\frac{3}{4}$,
(1)${{x}_{1}}^{2}+{{x}_{2}}^{2}$=(x1+x22-2x1x2=($\frac{7}{4}$)2-2×(-$\frac{3}{4}$)=$\frac{73}{16}$;
(2)(x1-3)(x2-3)=x1x2-3(x1+x2)+9=-$\frac{3}{4}$-3×$\frac{7}{4}$+9=1;
(3)$\frac{{x}_{2}}{{x}_{1}+x}+\frac{{x}_{1}}{{x}_{2}+1}$=$\frac{{{x}_{2}}^{2}+1+{{x}_{1}}^{2}+1}{({x}_{1}+1)({x}_{2}+1)}$=${\frac{({x}_{1}+{x}_{2})^{2}-2{x}_{1}{x}_{2}+2}{{x}_{1}{x}_{2}+{x}_{1}+{x}_{2}+1}}_{\;}$=$\frac{(\frac{7}{4})^{2}-2×(-\frac{3}{4})+2}{-\frac{3}{4}+\frac{7}{4}+1}$=$\frac{105}{32}$;
(4)|x1-x2|=$\sqrt{({x}_{1}-{x}_{2})^{2}}$=$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{(\frac{7}{4})^{2}-4×(-\frac{3}{4})}$=$\frac{97}{4}$.

点评 本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-$\frac{b}{a}$,x1x2=$\frac{c}{a}$.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网