题目内容

二次函数的图象经过点A(0,-3),B(2,-3),C(-1,0).
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标.
考点:待定系数法求二次函数解析式,二次函数的性质
专题:计算题
分析:(1)设一般式y=ax2+bx+c,再把三个点的坐标分别代入得到关于a、b、c的方程组,然后解方程组求出a、b、c的值,从而得到二次函数解析式;
(2)先把(1)中的解析式配成顶点式,然后根据二次函数的性质确定顶点坐标.
解答:解:(1)设二次函数解析式为y=ax2+bx+c,
根据题意得
c=-3
4a+2b+c=-3
a-b+c=0
,解得
a=1
b=-2
c=-3

所以二次函数解析式为y=x2-2x-3;
(2)y=x2-2x-3=(x-1)2-4,
所以二次函数图象的顶点坐标为(1,-4).
点评:本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.一般地,当已知抛物线上三点时,常选择一般式,用待定系数法列三元一次方程组来求解;当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解;当已知抛物线与x轴有两个交点时,可选择设其解析式为交点式来求解.也考查了二次函数的性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网