题目内容
(8分)解分式方程:.
(3分)如图,分别过等边△ABC的顶点A、B作直线a,b,使a∥b.若∠1=40°,则∠2的度数为 .
(10分)如图,⊙O是△ABC的外接圆,AB是⊙O的直径,FO⊥AB,垂足为点O,连接AF并延长交⊙O于点D,连接OD交BC于点E,∠B=30°,FO=.
(1)求AC的长度;
(2)求图中阴影部分的面积.(计算结果保留根号)
(3分)如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是( )
A.2:3 B. C.4:9 D.8:27
(12分)如图,在平面直角坐标系中,已知抛物线的对称轴为,且经过点A(2,1),点P是抛物线上的动点,P的横坐标为m(0<m<2),过点P作PB⊥x轴,垂足为B,PB交OA于点C,点O关于直线PB的对称点为D,连接CD,AD,过点A作AE⊥x轴,垂足为E.
(1)求抛物线的解析式;
(2)填空:①用含m的式子表示点C,D的坐标:C( , ),D( , );
②当m= 时,△ACD的周长最小;
(3)若△ACD为等腰三角形,求出所有符合条件的点P的坐标.
(4分)分解因式:= .
(4分)下列运算正确的是( )
A. B. C. D.
分解因式:a﹣a= .
阅读材料:善于思考的小军在解方程组时,采用了一种“整体代换”的解法:
【解析】将方程②变形:4x+10y+y=5 即2(2x+5y)+y=5③
把方程①带入③得:2×3+y=5,∴y=﹣1
把y=﹣1代入①得x=4,∴方程组的解为.
请你解决以下问题:
(1)模仿小军的“整体代换”法解方程组
(2)已知x,y满足方程组.
(i)求的值;
(ii)求的值.