题目内容

计算:
(1)
1
2
sin60°+
2
2
 cos45°+sin30°•cos30°;
(2)3tan30°-
1-2tan60°+tan260°
+cos0°•cos45°;
(3)
sin50°
cos240°
+
1+cos45°
tan230°-sin260°

(4)cos21°+cos22°+…+cos288°+cos289°.
考点:特殊角的三角函数值,互余两角三角函数的关系
专题:
分析:分别把各特殊角的三角函数值代入进行计算即可;不是特殊角的三角函数利用三角函数的关系式求解.
解答:(1)
1
2
sin60°+
2
2
 cos45°+sin30°•cos30°;
=
1
2
×
3
2
+
2
2
×
2
2
+
1
2
×
3
2

=
3
2
+
1
2

(2)3tan30°-
1-2tan60°+tan260°
+cos0°•cos45°;
=3×
3
3
-(
3
-1)+1×
2
2

=
3
-
3
+1+
2
2

=1+
2
2

(3)
sin50°
cos240°
+
1+cos45°
tan230°-sin260°

=
sin50°
cos40°
+
1+
2
2
1
3
-
3
4

=1-
12
5
-
6
2
5

=-
7
5
-
6
2
5

(4)cos21°+cos22°+…+cos288°+cos289°.
=(cos21°+cos289°)+(cos22°+cos288°)+…cos245°,
=(cos21°+sin21°)+(cos22°+sin22°)+…cos245°,
=1+1+…+
1
2

=44
1
2
点评:本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值及三角函数的关系式是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网