题目内容
若关于的一元二次方程有两个不相等的实数根,则的取值范围是( )
A. B.且
C. D.且
截至2014年1月初,济南户籍总人口613.4万人,其中613.4万人用科学记数法表示为( )
A、6.134×102人 B、613.4×104人
C、6.134×105人 D、6.134×106人
如图,在下列网格中,小正方形的边长均为1,点A、B、O都在格点上,则∠AOB的正弦值是( )
A、 B、 C、 D、
宜春八中初一年级开展了“读书月活动”文学知识的竟赛,其中有2名男生和2名女生获得了并列第一名的成绩.现要从这4名学生中随机抽取参加宜春市举办的文学知识竞赛,请你用列树状图(或表格)的方法,求下列事件的概率:
(1)随机抽取一名,恰好抽到1名男生.
(2)抽取2名,恰好是1名女生和1名男生.
在一个不透明的口袋中,装有5个红球和n个黄球,它们除颜色外其余均相同.若从中随机摸出一个球,摸到黄球的概率为,则口袋中球的总数为 个.
(本小题满分12分)如图,在直角坐标系xOy中,一次函数(m为常数)的图像与x轴交于A(-3,0),与y轴交于点C;以直线为对称轴的抛物线(a,b,c为常数,且a>0)经过A,C两点,与x轴正半轴交于点B.
(1)求一次函数及抛物线的函数表达式。
(2)在对称轴上是否存在一点P,使得PBC的周长最小,若存在,请求出点P的坐标.
(3)点D是线段OC上的一个动点(不与点O、点C重合),过点D作DE‖PC交x轴于点E,连接PD、PE。设CD的长为m, PDE的面积为S。求S与m之间的函数关系式。并说明S是否存在最大值,若存在,请求出最大值:若不存在,请说明理由。
(本小题满分6分)年“植树节”前夕,某小区为绿化环境,购进棵柏树苗和棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的倍少元,每棵柏树苗的进价是多少元?
(本题满分14分)如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB的延长线于F.切点为G,连接AG交CD于K.
(1)求证:KE=GE;
(2)若=KD·GE,试判断AC与EF的位置关系,并说明理由;
(3)在(2)的条件下,若sinE=,AK=,求FG的长.
已知线段AB=10cm,点C是线段AB的黄金分割点(AC>BC),则AC的长为( )
A.
B.
C.
D.