题目内容
如果有理数满足|a-2|+(1-b)2=0,试求
+
+
+…+
的值.
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2003)(b+2003) |
考点:有理数的混合运算,非负数的性质:绝对值,非负数的性质:偶次方
专题:
分析:根据|a-2|+(1-b)2=0,可求得a,b的值,再把
+
+
+…+
化简即可得出结论.
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2003)(b+2003) |
解答:解:∵|a-2|+(1-b)2=0,
∴a-2=0,且1-b=0,
解得a=2,b=1,
∴原式=
+
+
+…+
=1-
+
-
+
-
+••+
-
=1-
=
.
∴a-2=0,且1-b=0,
解得a=2,b=1,
∴原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 2005×2004 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2004 |
| 1 |
| 2005 |
=1-
| 1 |
| 2005 |
=
| 2004 |
| 2005 |
点评:本题考查了有理数的混合运算以及非负数的性质,将原式拆成1-
+
-
+
-
+••+
-
是解题的关键.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 2004 |
| 1 |
| 2005 |
练习册系列答案
相关题目
A、
| ||
B、
| ||
C、
| ||
D、
|