题目内容

【题目】如图,AB∥CD,点E,F分别在AB,CD上,连接EF,∠AEF,∠CFE的平分线交于点G,∠BEF,∠DFE的平分线交于点H.易证∠EHF=∠EGF=∠GEH=90°,从而可知四边形EGFH是矩形.

小明继续进行了探索,过G作MN∥EF,分别交AB,CD于点M,N,过H作PQ∥EF,分别交AB,CD于点P,Q,得到四边形MNQP,此时,他猜想四边形MNQP是菱形,请在下列框中补全他的证明思路.

由AB∥CD,MN∥EF,PQ∥EF,易证四边形MNQP是平行四边形.要证平行四边形MNQP是菱形,只要证MN=NQ.由已知条件_____,MN∥EF,可得NG=NF,故只要证GM=FQ,即证△MGE≌△QFH.易证_____,_____,故只要证∠MGE=∠QFH,易证∠MGE=∠GEF,∠QFH=∠EFH,_____,即可得证.

【答案】FG平分∠CFE GE=FH ∠GME=∠FQH ∠GEF=∠EFH

【解析】

利用菱形的判定方法首先得出要证MNQP是菱形,只要证MN=NQ,再证∠MGE=∠QFH得出即可

ABCD,MNEF,PQEF,易证四边形MNQP是平行四边形,

要证MNQP是菱形,只要证MN=NQ,由已知条件:FG平分∠CFE,MNEF,

故只要证GM=FQ,即证MGEQFH,易证GE=FH、GME=FQH.

故只要证∠MGE=QFH,易证∠MGE=GEF,QFH=EFH,GEF=EFH,即可得证;

故答案为:FG平分∠CFE,GE=FH、GME=FQH,GEF=EFH.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网