题目内容
19.分析 首先利用平行线的性质得出∠BMF=100°,∠FNB=70°,再利用翻折变换的性质得出∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,进而求出∠B的度数以及得出∠D的度数.
解答 解:∵MF∥AD,FN∥DC,∠A=100°,∠C=70°,
∴∠BMF=100°,∠FNB=70°,
∵将△BMN沿MN翻折,得△FMN,
∴∠FMN=∠BMN=50°,∠FNM=∠MNB=35°,
∴∠F=∠B=180°-50°-35°=95°,
∴∠D=360°-100°-70°-95°=95°.
故答案为:95°.
点评 此题主要考查了平行线的性质以及多边形内角和定理以及翻折变换的性质,得出∠FMN=∠BMN,∠FNM=∠MNB是解题关键.
练习册系列答案
相关题目
14.已知a3=2,b5=3,则a、b的大小关系是( )
| A. | a<b | B. | a>b | C. | a=b | D. | 不确定 |
4.
如图,在△ABC中,点D,E分别在AB,AC边上,DE∥BC,$\frac{{{S_{△ADE}}}}{{{S_{△ABC}}}}=\frac{1}{9}$,BC=3.6,则DE等于( )
| A. | 0.4 | B. | 0.9 | C. | 1.2 | D. | 1 |
8.
如图所示,直线l1∥l2,∠1=150°,∠2=60°,则∠3为( )
| A. | 60° | B. | 70° | C. | 80° | D. | 90° |
9.随着“互联网+”时代的到来,一种新型打车方式受到大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p元/公里计算,耗时费按q元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:
(1)求p,q的值;
(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?
| 速度y(公里/时) | 里程数s(公里) | 车费(元) | |
| 小明 | 60 | 8 | 12 |
| 小刚 | 50 | 10 | 16 |
(2)如果小华也用该打车方式,车速55公里/时,行驶了11公里,那么小华的打车总费用为多少?