题目内容

13.如图,四边形ABCD为平行四边形,EF∥BD,分别交BC,CD于点P,Q,交AB,AD的延长线于E,F,且BE=BP,求证:
(1)∠E=∠F;
(2)四边形ABCD是菱形.

分析 (1)首先判定四边形BPFD是平行四边形,所以BP∥DF,利用平行线的性质可得∠F=∠BPE,又因为BE=BP,可得∠E=∠F;
(2)利用平行线的性质以及菱形的判定方法进而得出即可.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴BP∥DF,
∵EF∥BD,
∴四边形BPFD是平行四边形,
∴BP∥DF,
∴∠F=∠BPE,
∵BE=BP,
∴∠E=∠BPE,
∴∠E=∠F;

(2)∵EF∥BD,
∴∠E=∠ABD,∠F=∠ADB
∴∠ABD=∠ADB,
又∵四边形ABCD为平行四边形,
∴四边形ABCD是菱形.

点评 本题考查了平行四边形的性质和判定、菱形的判定等知识,得出四边形BPFD是平行四边形是解题关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网