题目内容
已知1-| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 20 |
(1)计算
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 49×50 |
(2)根据计算(1)发现的规律,试猜想
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 49×50 |
| 1 |
| 2008×2009 |
分析:从题中
=
-
=
;
=
-
=
;
=
-
=
可知
×
=
-
,从而求(1),(2)
| 1 |
| 1×2 |
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 3×4 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 12 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:因为,
=
=1-
,
=
=
-
,
=
=
-
,
=
-
(4分)
所以,
+
+
+
=1-
+
-
+
-
+…+
-
+
-
(6分)
=1-
=
(8分)
(2)
+
+…+
=1-
+
-
+
-
+
-…-
=1+(-
+
)+(-
+
)+(-
+
)-…-
=1-
=
(10分)
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2×3 |
| 1 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3×4 |
| 1 |
| 12 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 49×50 |
| 1 |
| 49 |
| 1 |
| 50 |
所以,
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 49×50 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 48 |
| 1 |
| 49 |
| 1 |
| 49 |
| 1 |
| 50 |
=1-
| 1 |
| 50 |
| 49 |
| 50 |
(2)
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 2009×2010 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2009 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 2009 |
| 1 |
| 2009 |
| 2008 |
| 2009 |
点评:本题考查学生对于数字变化规律型的题目要有一定总结和发现规律的能力.需要学生有一定的数学思想.
练习册系列答案
相关题目