题目内容
已知1-| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 12 |
(1)求值:
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 5×6 |
(2)化简
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| n(n+1) |
(3)用类似方法计算
| 1 |
| 1×3 |
| 1 |
| 3×5 |
| 1 |
| 7×9 |
| 1 |
| 2007×2009 |
分析:(1)根据已知等式可以把各分数分解为1-
+
-
+…+
-
,即可求出结果;
(2)和(1)的方法一样,把各分数分解为1-
+
-
…
-
,然后前后抵消即可求出结果;
(3)把各分数分解为
(1-
+
-
+…+
-
),然后括号里面可以利用前面的方法计算.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 6 |
(2)和(1)的方法一样,把各分数分解为1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
(3)把各分数分解为
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2007 |
| 1 |
| 2009 |
解答:解:(1)原式=1-
+
-
+…+
-
=1-
=
;
(2)原式=1-
+
-
+…
-
=1-
=
;
(3)原式=
(1-
+
-
+…+
-
)=
(1-
)=
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 6 |
| 1 |
| 6 |
| 5 |
| 6 |
(2)原式=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(3)原式=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2007 |
| 1 |
| 2009 |
| 1 |
| 2 |
| 1 |
| 2009 |
| 1004 |
| 2009 |
点评:此题关键用到的知识点为:
=
×(
-
).
| 1 |
| mn |
| 1 |
| m-n |
| 1 |
| n |
| 1 |
| m |
练习册系列答案
相关题目