题目内容
(1)计算: ; (2)解方程:.
函数y= 中,自变量x的取值范围是________.
在□ABCD中,过点D作DE⊥AB于点E,点F在CD上,CF=AE,连接BF,AF.
(1)求证:四边形BFDE是矩形;
(2)若AF平分∠BAD,且AE=3,DE=4,求矩形BFDE的面积.
若正多边形的一个外角是45°,则该正多边形的边数是_________.
有一种螃蟹,从河里捕获后不放养最多只能活两天,如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去,假设放养期内蟹的个体重量基本保持不变,现有一经销商,按市场价收购了这种活蟹1000千克放养在塘内,此时市场价为每千克30元,据测算,以后每千克活蟹的市场价每天可上升1元,但是放养一天需各种费用支出400元,且平均每天还有10千克蟹死去,假定死蟹均于当天全部售出,售价都是每千克20元.
(1)设x天后每千克活蟹的市场价为P元,写出P关于x的函数关系式.
(2)如果放养x天后将活蟹一次性出售,并记1000千克蟹的销售额为Q元,写出Q关于X的函数关系式.
(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=销售总额-收购成本-费用),最大利润是多少?
数据6,5,7,7,9的众数是_____________
如图是由五个相同的小立方块搭成的几何体,则它的俯视图是( )
A. B. C. D.
如图,在矩形ABCD中,对角线AC、BD相交于点O,若DFAC,ADF:FDC= 3:2,则BDF=_________.
如图,在平面直角坐标系xOy中,A、B为x轴上两点,C、D为y轴上的两点,经过点A、C、B的抛物线的一部分c1与经过点A、D、B的抛物线的一部分c2组合成一条封闭曲线,我们把这条封闭曲线成为“蛋线”.已知点C的坐标为(0,﹣ ),点M是抛物线C2:y=mx2﹣2mx﹣3m(m<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求m的值.