题目内容

8.如图,已知?ABCD中,AB=6,∠DAB=60°,AC平分∠DAB,E为AB的中点,点F是AC上一动点,求EF+BF的最小值.

分析 根据菱形的对角线互相垂直平分,点B关于AC的对称点是点D,连接ED,EF+BF最小值=ED,然后解直角三角形即可求解.

解答 解:在?ABCD中,∵AB∥CD,
∴∠ACD=∠CAB,
∵AC平分∠DAB,
∴∠DAC=∠BAC,
∴∠DAC=∠DCA,
∴AD=CD,
∴四边形ABCD是菱形,
∴AC与BD互相垂直平分,
∴点B、D关于AC对称,
连接ED,则ED就是所求的EF+BF的最小值的线段,
∵E为AB的中点,∠DAB=60°,
∴DE⊥AB,
∴ED=$\sqrt{A{D}^{2}-A{E}^{2}}$=$\sqrt{{6}^{2}-{3}^{2}}$=3$\sqrt{3}$,
∴EF+BF的最小值为3$\sqrt{3}$.

点评 本题考查的是轴对称-最短路线问题,涉及到三角形中位线定理和解直角三角形,熟知“两点之间,线段最短”是解答此题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网