ÌâÄ¿ÄÚÈÝ
13£®Ä³É̵êÓõ÷µÍ¼Û¸ñµÄ·½Ê½´ÙÏún¸ö²»Í¬µÄÍæ¾ß£¬µ÷ÕûºóµÄµ¥¼Ûy£¨Ôª£©Óëµ÷ÕûǰµÄµ¥¼Ûx£¨Ôª£©Âú×ãÒ»´Îº¯Êý¹ØÏµ£¬Èç±í£º| µÚ1¸ö | µÚ2¸ö | µÚ3¸ö | µÚ4¸ö | ¡ | µÚn¸ö | |
| µ÷ÕûǰµÄµ¥¼Ûx£¨Ôª£© | x1 | x2=12 | x3=48 | x4 | ¡ | xn |
| µ÷ÕûºóµÄµ¥¼Ûy£¨Ôª£© | y1 | y2=9 | y3=39 | y4 | ¡ | yn |
£¨1£©ÇóyÓëxµÄº¯Êý¹ØÏµÊ½£¬²¢È·¶¨xµÄȡֵ·¶Î§£»
£¨2£©Ä³¸öÍæ¾ßµ÷Õûǰµ¥¼ÛÊÇ120Ôª£¬¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡Á˶àÉÙÇ®£¿
·ÖÎö £¨1£©Éèy=kx+b£¬¸ù¾ÝÌâÒâÁз½³Ì×é¼´¿ÉµÃµ½½áÂÛ£¬ÔÙ¸ù¾ÝÒÑÖªÌõ¼þµÃµ½²»µÈʽÓÚÊǵõ½xµÄȡֵ·¶Î§ÊÇx£¾$\frac{18}{5}$£»
£¨2£©½«x=120´úÈëy=$\frac{5}{6}$x-1¼´¿ÉµÃµ½½áÂÛ£»
½â´ð ½â£º£¨1£©Éèy=kx+b£¬ÓÉÌâÒâµÃx=12£¬y=9£¬x=48£¬y=39£¬
¡à$\left\{\begin{array}{l}{9=12k+b}\\{39=72k+b}\end{array}\right.$
½âµÃ$\left\{\begin{array}{l}{k=\frac{5}{6}}\\{b=-1}\end{array}\right.$£¬
¡àyÓëxµÄº¯Êý¹ØÏµÊ½Îªy=$\frac{5}{6}$x-1£¬
¡ßÕân¸öÍæ¾ßµ÷ÕûºóµÄµ¥¼Û¶¼´óÓÚ2Ôª£¬
¡à$\frac{5}{6}$x-1£¾2£¬½âµÃx£¾$\frac{18}{5}$£¬
¡àxµÄȡֵ·¶Î§ÊÇx£¾$\frac{18}{5}$£»
£¨2£©½«x=120´úÈëy=$\frac{5}{6}$x-1µÃy=$\frac{5}{6}$¡Á120-1=99£¬
120-99=21£¬
´ð£º¹Ë¿Í¹ºÂòÕâ¸öÍæ¾ßÊ¡ÁË21Ôª£»
µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯ÊýµÄÓ¦Óã¬Çóº¯ÊýµÄ½âÎöʽ£¬Êì¼ÇÒ»´Îº¯ÊýµÄÐÔÖÊÊǽâÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
3£®¼ÆËã-3¡Á2µÄ½á¹ûµÈÓÚ£¨¡¡¡¡£©
| A£® | -1 | B£® | -5 | C£® | -6 | D£® | 1 |
1£®
ÊýѧС×éµÄͬѧΪÁ˽⡰ÔĶÁ¾µä¡±»î¶¯µÄ¿ªÕ¹Çé¿ö£¬Ëæ»úµ÷²éÁË50Ãûͬѧ£¬¶ÔËûÃÇÒ»ÖܵÄÔĶÁʱ¼ä½øÐÐÁËͳ¼Æ£¬²¢»æÖƳÉÈçͼËùʾµÄÌõÐÎͳ¼ÆÍ¼£¬Õâ×éÊý¾ÝµÄÖÐλÊýºÍÖÚÊý·Ö±ðÊÇ£¨¡¡¡¡£©
| A£® | ÖÐλÊýºÍÖÚÊý¶¼ÊÇ8Сʱ | B£® | ÖÐλÊýÊÇ25ÈË£¬ÖÚÊýÊÇ20ÈË | ||
| C£® | ÖÐλÊýÊÇ13ÈË£¬ÖÚÊýÊÇ20ÈË | D£® | ÖÐλÊýÊÇ6Сʱ£¬ÖÚÊýÊÇ8Сʱ |
18£®¶¨ÒåÔËË㣺a@b=a£¨1-b£©£¬Èôa¡¢bÊÇ·½³Ìx2-x+$\frac{\sqrt{3}}{2}$m=0£¨m£¼0£©µÄÁ½¸ù£¬Ôòb@b-a@aµÄֵΪ£¨¡¡¡¡£©
| A£® | 0 | B£® | 1 | C£® | 2 | D£® | ÓëmÓÐ¹Ø |
5£®¼ÆË㣨-6£©¡Â£¨-3£©µÄ½á¹ûÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | 2 | C£® | -2 | D£® | 3 |
2£®ÔÚÕý·½ÐΣ¬¾ØÐΣ¬ÁâÐΣ¬Æ½ÐÐËıßÐΣ¬ÕýÎå±ßÐÎÎå¸öͼÐÎÖУ¬ÖÐÐĶԳÆÍ¼ÐεĸöÊýÊÇ£¨¡¡¡¡£©
| A£® | 2 | B£® | 3 | C£® | 4 | D£® | 5 |
3£®ÈôµÈÑüÈý½ÇÐεÄÁ½±ß³¤Îª3ºÍ5£¬Ôò¸ÃµÈÑüÈý½ÇÐεÄÖܳ¤Îª£¨¡¡¡¡£©
| A£® | 11 | B£® | 13 | C£® | 11»ò13 | D£® | 12 |