题目内容

已知在两个同心圆中,大圆的弦AB,AC分别与小圆相切于点D,E.求证:DE∥BC且DE=
1
2
BC.
考点:切线的性质,三角形中位线定理,垂径定理
专题:证明题
分析:连接OD,OE,根据切线性质求出OD⊥AB,OE⊥AC,根据垂径定理求出AD=BD,AE=CE,根据三角形的中位线定理求出即可.
解答:证明:连接OD、OE,
则OD⊥AB,OE⊥AC,
由垂径定理得:AD=BD,AE=CE,
∴DE∥BC且DE=
1
2
BC.
点评:本题考查了三角形的中位线定理,垂径定理,切线的性质等知识点的应用,主要培养学生运用定理进行推理的能力,题型较好.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网