题目内容

如图所示,在菱形ABCD中,E、F分别是BC、CD上的点,且已知∠B=∠EAF=60°,证明:∠CEF=∠BAE.
考点:菱形的性质
专题:证明题
分析:由在菱形ABCD中,∠B=∠EAF=60°,易证得△ABC是等边三角形,继而可证得△ABE≌△ACF,继而证得△AEF是等边三角形;继而可得∠AEF=60°,则∠AEF+∠CEF=∠B+∠BAE,即可证得结论.
解答:证明:连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC是等边三角形,
∴AB=AC,∠ACB=∠B=60°,
∵∠BCD=180°-∠B=120°,
∴∠ACF=∠BCD-∠ACB=60°,
∴∠B=∠ACF,
∵∠BAE+∠EAC=∠EAC+∠CAF=60°,
∴∠BAE=∠CAF,
在△BAE和△CAF中,
∠BAE=∠CAF
AB=AC
∠B=∠ACF

∴△ABE≌△ACF(ASA),
∴AE=AF,
∵∠EAF=60°,
∴△AEF是等边三角形,
∴∠AEF=60°,
∵∠AEF+∠CEF=∠B+∠BAE,
∴∠CEF=∠BAE.
点评:此题考查了菱形的性质、全等三角形的判定与性质以及等边三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网