题目内容

2.如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.
(1)求证:△DEC≌△EDA;
(2)求DF的值.

分析 (1)根据矩形的性质、轴对称的性质可得到AD=EC,AE=DC,即可证到△DEC≌△EDA(SSS);
(2)易证AF=CF,设DF=x,则有AF=4-x,然后在Rt△ADF中运用勾股定理就可求出DF的长.

解答 (1)证明:∵四边形ABCD是矩形,
∴AD=BC,AB=DC.
由折叠可得:EC=BC,AE=AB,
∴AD=EC,AE=DC,
在△ADE与△CED中,
$\left\{\begin{array}{l}{AD=CE}\\{DE=ED}\\{DC=EA}\end{array}\right.$,
∴△DEC≌△EDA(SSS).
(2)解:∵∠ACD=∠BAC,∠BAC=∠CAE,
∴∠ACD=∠CAE,
∴AF=CF,
设DF=x,则AF=CF=4-x,
在RT△ADF中,AD2+DF2=AF2
即32+x2=(4-x)2
解得;x=$\frac{7}{8}$,
即DF=$\frac{7}{8}$.

点评 本题主要考查了矩形的性质、全等三角形的判定与性质、等腰三角形的判定、轴对称的性质等知识,解决本题的关键是明确折叠的性质,得到相等的线段,角.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网