题目内容
已知点P是线段AB的黄金分割点,AP>PB,如果AB=2,那么AP的长为 .
如图,△ABC是一张三角形的纸片,⊙O是它的内切圆,点D是其中的一个切点,已知AD=10cm,小明准备用剪刀沿着与⊙O相切的任意一条直线MN剪下一块三角形(△AMN),则剪下的△AMN的周长为( )
A.20cm B.15cm C.10cm D.随直线MN的变化而变化
如图,半径为1的⊙O与正五边形ABCDE的边AB、AE相切于点M、N,则劣弧的长度为 .
(本题满分10分)已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),tan∠BAC=.
(1)写出点B的坐标;
(2)在x轴上找一点D,连接BD,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;
(3)在(2)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m使得△APQ与△ADB相似?如存在,请求出的m值;如不存在,请说明理由.
(本题8分)计算:
(1)
(2)
某商品连续两次降价,每次都降20﹪后的价格为元,则原价是( )
A.元 B.1.2元 C.元 D.0.82元
已知在Rt△ABC中,∠C=90,sinA=,则tanB的值为( )
A. B. C. D.
如图,A、B、C是⊙O上的三个点,∠ABC=130°,则∠AOC的度数是 .
(8分)如图, △ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.
(1)求∠ECD的度数;
(2)若CE=12,求BC长.