题目内容
分解因式:a3﹣2a2+a=________.
m, n是方程的两根,则代数式的值是( )
A. 2007 B. 2008 C. 2009 D. 2010
如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.
已知A=
(1)化简A;
(2)若x满足-1≤x<2,且x为整数,请选择一个适合的x值代入,求A的值.
下列说法正确的是( )
A. 要调查人们对“低碳生活”的了解程度,宜采用普查方式
B. 一组数据:3,4,4,6,8,5的众数和中位数都是3
C. 必然事件的概率是100%,随机事件的概率是50%
D. 若甲组数据的方差S甲2=0.128,乙组数据的方差是S乙2=0.036,则乙组数据比甲组数据稳定
如图,抛物线与轴交于点,与轴交于,两点(点在轴正半轴上),为等腰直角三角形,且面积为,现将抛物线沿方向平移,平移后的抛物线过点时,与轴的另一点为,其顶点为,对称轴与轴的交点为.
求、的值.
连接,试判断是否为等腰三角形,并说明理由.
现将一足够大的三角板的直角顶点放在射线或射线上,一直角边始终过点,另一直角边与轴相交于点,是否存在这样的点,使以点、、为顶点的三角形与全等?若存在,求出点的坐标;若不存在,请说明理由.
已知抛物线y=ax2﹣2x+1与x轴没有交点,那么该抛物线的顶点所在的象限是【 】
A.第四象限 B.第三象限 C.第二象限 D.第一象限
如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.