题目内容

15.如图,△ABC中,∠ACB=90°,∠ABC=25°,以点C为旋转中心顺时针旋转后得到△A′B′C′,且点A在A′B′上,则旋转角为50°.

分析 由将△ACB绕点C顺时针旋转得到△A′B′C′,即可得△ACB≌△A′B′C′,则可得∠A'=∠BAC,△AA'C是等腰三角形,又由△ACB中,∠ACB=90°,∠ABC=25°,即可求得∠A'、∠B'AB的度数,即可求得∠ACB'的度数,继而求得∠B'CB的度数.

解答 解:∵将△ACB绕点C顺时针旋转得到△A′B′C′,
∴△ACB≌△A′B′C′,
∴∠A'=∠BAC,AC=CA',
∴∠BAC=∠CAA',
∵△ACB中,∠ACB=90°,∠ABC=25°,
∴∠BAC=90°-∠ABC=65°,
∴∠BAC=∠CAA'=65°,
∴∠B'AB=180°-65°-65°=50°,
∴∠ACB'=180°-25°-50°-65°=40°,
∴∠B'CB=90°-40°=50°.
故答案为:50°.

点评 此题考查了旋转的性质、直角三角形的性质以及等腰三角形的性质.此题难度不大,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网