题目内容

13.如图,在平行四边形ABCD中,过点B作BE⊥CD于E点,连接AE,F为AE上一点,且∠BFE=∠C.
(1)求证:△ABF∽△EAD;
(2)若AB=4,∠BAE=30°,求AE的长;
(3)在(1)(2)的条件下,若AD=3,求BF的长.

分析 (1)根据两角相等,即∠AFB=∠ADE和∠BAE=∠AED,证明△ABF∽△EAD;
(2)在Rt△ABE中,利用30°的余弦得AE的长;
(3)由相似得:$\frac{BF}{AD}=\frac{AB}{AE}$,代入可求得BF的长.

解答 证明:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠C+∠ADE=180°,
∵∠BFE=∠C,
∴∠BFE+∠ADE=180°,
∵∠BFE+∠AFB=180°,
∴∠AFB=∠ADE,
∵AB∥DC,
∴∠BAE=∠AED,
∴△ABF∽△EAD;
(2)∵四边形ABCD是平行四边形,
∴AB∥CD,
∵BE⊥DC,
∴BE⊥AB,
∴∠ABE=90°,
在Rt△ABE中,
∵AB=4,∠BAE=30°,
∴cos∠BAE=cos30°=$\frac{AB}{AE}$,
∴AE=$\frac{AB}{cos30°}$=$\frac{4}{\frac{\sqrt{3}}{2}}$=$\frac{8\sqrt{3}}{3}$;
(3)∵△ABF∽△EAD,
∴$\frac{BF}{AD}=\frac{AB}{AE}$,
∴$\frac{BF}{3}=\frac{4}{\frac{8\sqrt{3}}{3}}$,
∴BF=$\frac{3\sqrt{3}}{2}$.

点评 本题是相似形的综合题,难度适中,考查了三角形相似的判定和性质,在相似的判定中,常运用平行和两角对应相等证明两三角形相似;再求线段的长时,可以利用勾股定理来求,有时也会根据相似得比例式代入求解,也可以利用三角函数列式计算求得.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网