题目内容

如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=10cm,BC=8cm,求△BCE的周长.
考点:线段垂直平分线的性质,等腰三角形的性质
专题:
分析:根据线段垂直平分线上的点到线段两端点的距离相等,可得AE与BE的关系,根据根据等腰三角形,可得AB与AE、CE的关系,根据三角形三边的和等于三角形的周长,可得答案.
解答:解:∵DE垂直平分AB交AC,
∴BE=AE.
AC=AE+EC=BE+CE.
BE+EC=AC=AB=10(cm),
△BCE的周长=BE+EC+BC=10+8=18(cm).
点评:本题考查了线段垂直平分线的性质,先确定BE与AE的关系,在确定BE+EC与AB的关系,再求出三角形的周长.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网