题目内容

4.如图,在等边△ABC中,点D,E分别在边BC,AB上,且BD=AE,AD与CE交于点F,作CM⊥AD,垂足为M,下列结论不正确的是(  )
A.AD=CEB.MF=$\frac{1}{2}$CFC.∠BEC=∠CDAD.AM=CM

分析 由等边三角形的性质和已知条件证出△AEC≌△BDA,即可得出A正确;
由全等三角形的性质得出∠BAD=∠ACE,求出∠CFM=∠AFE=60°,得出∠FCM=30°,即可得出B正确;
由等边三角形的性质和三角形的外角性质得出C正确;
D不正确.

解答 解:A正确;理由如下:
∵△ABC是等边三角形,
∴∠BAC=∠B=60°,AB=AC
又∵AE=BD
在△AEC与△BDA中,
$\left\{\begin{array}{l}{AB=AC}\\{∠BAC=∠B}\\{AE=BD}\end{array}\right.$,
∴△AEC≌△BDA(SAS),
∴AD=CE;
B正确;理由如下:
∵△AEC≌△BDA,
∴∠BAD=∠ACE,
∴∠AFE=∠ACE+∠CAD=∠BAD+∠CAD=∠BAC=60°,
∴∠CFM=∠AFE=60°,
∵CM⊥AD,
∴在Rt△CFM中,∠FCM=30°,
∴MF=$\frac{1}{2}$CF;
C正确;理由如下:
∵∠BEC=∠BAD+∠AFE,∠AFE=60°,
∴∠BEC=∠BAD+∠AFE=∠BAD+60°,
∵∠CDA=∠BAD+∠CBA=∠BAD+60°,
∴∠BEC=∠CDA;
D不正确;理由如下:
要使AM=CM,则必须使∠DAC=45°,由已知条件知∠DAC的度数为大于0°小于60°均可,
∴AM=CM不成立;
故选:D.

点评 本题考查了等边三角形的性质、全等三角形的判定与性质、含30°角的直角三角形的性质;熟练掌握等边三角形的性质,并能进行推理论证与计算是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网