题目内容
15.在4×4的方格纸中,△ABC的三个顶点都在格点上.(1)在图1中画出与△ABC成轴对称且与△ABC有公共边的格点三角形(画出一个即可);
(2)将图2中的△ABC绕着点C按顺时针方向旋转90°,画出经旋转后的三角形.
分析 (1)根据成轴对称图形的概念,分别以边AC、BC所在的直线为对称轴作出图形即可;
(2)根据网格结构找出点A、B绕着点C按顺时针方向旋转90°后的对应点的位置,再与点C顺次连接即可.
解答 解:如图所示.![]()
点评 本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.
练习册系列答案
相关题目
5.
如图所示,反比例函数y=$\frac{1}{x}$与直线y=-x+2只有一个公共点P,则称P为切点.若反比例函数y=$-\frac{k}{x}$与直线y=kx+6只有一个公共点M,则当k<0时切点M的坐标是( )
| A. | (-1,3) | B. | (3,-1) | C. | (1,3) | D. | (-3,1) |
6.
甲、乙、丙、丁四名射击运动员在选拔赛中,每人射击了10次,甲、乙两人的成绩如表所示.丙、丁两人的成绩如图所示.欲选一名运动员参赛,从平均数与方差两个因素分析,应选( )
| 甲 | 乙 | |
| 平均数 | 9 | 8 |
| 方差 | 1 | 1 |
| A. | 甲 | B. | 乙 | C. | 丙 | D. | 丁 |
3.
如图,E,F分别是?ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )
| A. | 6 | B. | 12 | C. | 18 | D. | 24 |
10.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( )
| A. | $\frac{1}{2}$ | B. | $\frac{1}{5}$ | C. | $\frac{3}{10}$ | D. | $\frac{7}{10}$ |
20.
如图,电线杆CD的高度为h,两根拉线AC与BC相互垂直,∠CAB=α,则拉线BC的长度为(A、D、B在同一条直线上)( )
| A. | $\frac{h}{sinα}$ | B. | $\frac{h}{cosα}$ | C. | $\frac{h}{tanα}$ | D. | h•cosα |
7.垫球是排球队常规训练的重要项目之一.下列图表中的数据是甲、乙、丙三人每人十次垫球测试的成绩.测试规则为连续接球10个,每垫球到位1个记1分.
运动员甲测试成绩表

(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
运动员甲测试成绩表
| 测试序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| 成绩(分) | 7 | 6 | 8 | 7 | 7 | 5 | 8 | 7 | 8 | 7 |
(1)写出运动员甲测试成绩的众数和中位数;
(2)在他们三人中选择一位垫球成绩优秀且较为稳定的接球能手作为自由人,你认为选谁更合适?为什么?(参考数据:三人成绩的方差分别为S甲2=0.8、S乙2=0.4、S丙2=0.8)
(3)甲、乙、丙三人相互之间进行垫球练习,每个人的球都等可能的传给其他两人,球最先从甲手中传出,第三轮结束时球回到甲手中的概率是多少?(用树状图或列表法解答)
5.一元二次方程x2-7x-2=0的实数根的情况是( )
| A. | 有两个不相等的实数根 | B. | 有两个相等的实数根 | ||
| C. | 没有实数根 | D. | 不能确定 |