题目内容
如图,点A从原点出发沿数轴向右运动,同时,点B也从原点出发沿数轴向左运动3秒后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/秒).

(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向右运动,几秒时,原点恰好处在点A、点B的正中间?
(3)当A、B两点从(2)中的位置继续以原来的速度沿数轴向右运动的同时,另一点C从原点位置也向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10个单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;
(2)若A、B两点从(1)中的位置开始,仍以原来的速度同时沿数轴向右运动,几秒时,原点恰好处在点A、点B的正中间?
(3)当A、B两点从(2)中的位置继续以原来的速度沿数轴向右运动的同时,另一点C从原点位置也向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10个单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?
考点:一元一次方程的应用,数轴
专题:
分析:(1)设点A的速度为每秒t个单位,则点B的速度为每秒5t个单位,由甲的路程+乙的路程=总路程建立方程求出其解即可;
(2)设x秒时原点恰好处在点A、点B的正中间,根据两点离原点的距离相等建立方程求出其解即可;
(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.
(2)设x秒时原点恰好处在点A、点B的正中间,根据两点离原点的距离相等建立方程求出其解即可;
(3)先根据追击问题求出A、B相遇的时间就可以求出C行驶的路程.
解答:解:(1)设点A的速度为每秒t个单位,则点B的速度为每秒5t个单位,由题意,得
3t+3×5t=18,
解得:t=1,
∴点A的速度为每秒1个单位长度,则点B的速度为每秒5个单位长度.
如图:

(2)设x秒时原点恰好在A、B的中间,由题意,得
3+x=15-5x,
解得:x=2.
∴2秒时,原点恰好处在点A、点B的正中间;
(3)由题意,得
B追上A的时间为:10÷(5-1)=2.5秒,
∴C行驶的路程为:2.5×10=25个单位长度.
3t+3×5t=18,
解得:t=1,
∴点A的速度为每秒1个单位长度,则点B的速度为每秒5个单位长度.
如图:
(2)设x秒时原点恰好在A、B的中间,由题意,得
3+x=15-5x,
解得:x=2.
∴2秒时,原点恰好处在点A、点B的正中间;
(3)由题意,得
B追上A的时间为:10÷(5-1)=2.5秒,
∴C行驶的路程为:2.5×10=25个单位长度.
点评:本题考查了列一元一次方程解实际问题的运用,数轴的运用,行程问题的相遇问题和追及问题的数量关系的运用,解答时根据行程问题的数量关系建立方程是关键.
练习册系列答案
相关题目