题目内容
2.分析 连接DC,求出AC=AB=3,根据平行线性质和等腰三角形性质得出∠DAC=∠ACB=∠B,求出∠DAC=∠COD,推出A、D、C、O四点共圆,求出∠COB=∠ADC,根据相似三角形的判定得出△DAC∽△OBC,得出比例式,代入求出即可.
解答 证明:![]()
连接DC,
∵AO=2,OB=1,
∴AC=AB=2+1=3,
∵AD∥BC,AC=AB,
∴∠DAC=∠ACB=∠B,
∵∠B=∠COD,
∴∠DAC=∠COD,
∴A、D、C、O四点共圆,
∴∠COB=∠ADC,
∵∠B=∠DAC,
∴△DAC∽△OBC,
∴$\frac{AD}{AC}=\frac{OB}{BC}$,
∴AD•BC=AC•OB=3×1=3.
点评 本题考查了圆内接四边形的性质,相似三角形的性质和判定,等腰三角形的性质,平行线的性质的应用,能求出△DAC∽△OBC是解此题的关键.
练习册系列答案
相关题目
9.计算$\sqrt{6{x}^{3}}÷2\sqrt{\frac{x}{3}}$的结果是( )
| A. | 2$\sqrt{2}$x | B. | x | C. | 6$\sqrt{2}$x | D. | $\frac{2\sqrt{2}}{3}$x |
7.
小东同学在学习了二次函数图象以后,自己提出了这样一个问题:
探究:函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质.
小东根据学习函数的经验,对函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的自变量x的取值范围是x≠1;
(2)下表是y与x的几组对应值.
则m的值是$\frac{29}{6}$;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是$(2,\frac{3}{2})$,结合函数的图象,
写出该函数的其他性质(一条即可):当x<1时,y随x的增大而减小.
探究:函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质.
小东根据学习函数的经验,对函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的图象与性质进行了如下探究:下面是小东的探究过程,请补充完成:
(1)函数$y=\frac{1}{2}{(x-1)^2}+\frac{1}{x-1}$的自变量x的取值范围是x≠1;
(2)下表是y与x的几组对应值.
| x | … | -2 | -1 | 0 | $\frac{1}{2}$ | $\frac{2}{3}$ | $\frac{4}{3}$ | $\frac{3}{2}$ | 2 | 3 | 4 | … |
| y | … | $\frac{25}{6}$ | $\frac{3}{2}$ | $-\frac{1}{2}$ | $-\frac{15}{8}$ | $-\frac{53}{18}$ | $\frac{55}{18}$ | $\frac{17}{8}$ | $\frac{3}{2}$ | $\frac{5}{2}$ | m | … |
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,并画出该函数的图象;
(4)小东进一步探究发现,该函数图象在第一象限内的最低点的坐标是$(2,\frac{3}{2})$,结合函数的图象,
写出该函数的其他性质(一条即可):当x<1时,y随x的增大而减小.