题目内容
(1)求证:BM+DF=MF;
(2)求∠NCE的度数.
考点:正方形的性质,全等三角形的判定与性质,等腰直角三角形
专题:证明题,压轴题
分析:(1)截长补短类型题目,延长CD至G使DG=BM,证明△ADG≌△ABM,将BM+DF转化到一条线段GF上,再证明MF=GF;
(2)过点N作NH⊥EB,证△MHN≌△ABM,再根据线段间的关系得到NH=HC,从而得到△CHN是等腰直角三角形,再根据等腰直角三角形的性质可得∠NCE=45°.
(2)过点N作NH⊥EB,证△MHN≌△ABM,再根据线段间的关系得到NH=HC,从而得到△CHN是等腰直角三角形,再根据等腰直角三角形的性质可得∠NCE=45°.
解答:(1)证明:延长CD至G使DG=BM,
在△ADG和△ABM中,
,
∴△ADG≌△ABM(SAS),
∴AG=AM,
又∵△AMN为等腰直角三角形,
∴∠MAN=45°,
∴∠FAD+∠MAB=45°,
∵∠DAG=∠BAM,
∴∠GAF=∠FAD+∠DAG=45°,
∴∠GAF=∠MAN,
在在△AFG和△AFM中,
,
∴△AFG≌△AFM(SAS),
∴MF=GF,
又∵GF=GD+DF,GD=BM,
∴BM+DF=MF;
(2)解:过点N作NH⊥EB于点H,
∠AMB=180°-∠AMN-∠NMH=90°-∠NMH=∠MNH,
在△ABM≌△MHN中,
,
∴△ABM≌△MHN(AAS),
∴AB=MH,BM=NH,
∵CH=MH-MC=AB-MC=BC-MC=BM=NH,
∴△CHN是等腰直角三角形,
∴∠NCE=∠NCG=45°.
在△ADG和△ABM中,
|
∴△ADG≌△ABM(SAS),
∴AG=AM,
又∵△AMN为等腰直角三角形,
∴∠MAN=45°,
∴∠FAD+∠MAB=45°,
∵∠DAG=∠BAM,
∴∠GAF=∠FAD+∠DAG=45°,
∴∠GAF=∠MAN,
在在△AFG和△AFM中,
|
∴△AFG≌△AFM(SAS),
∴MF=GF,
又∵GF=GD+DF,GD=BM,
∴BM+DF=MF;
(2)解:过点N作NH⊥EB于点H,
∠AMB=180°-∠AMN-∠NMH=90°-∠NMH=∠MNH,
在△ABM≌△MHN中,
|
∴△ABM≌△MHN(AAS),
∴AB=MH,BM=NH,
∵CH=MH-MC=AB-MC=BC-MC=BM=NH,
∴△CHN是等腰直角三角形,
∴∠NCE=∠NCG=45°.
点评:本题考查了正方形的性质,全等三角形的判定与性质,熟记性质并作辅助线构造出全等三角形,然后确定出三角形全等的条件是解题的关键,也是本题的难点.
练习册系列答案
相关题目
| A、AC⊥BD |
| B、AC=BD |
| C、AC⊥BD且AC=BD |
| D、不确定 |
下列调查适合作抽样调查的是( )
| A、了解长沙电视台“天天向上”栏目的收视率 |
| B、了解初三年级全体学生的体育达标情况 |
| C、了解某班每个学生家庭电脑的数量 |
| D、“辽宁号”航母下海前对重要零部件的检查 |