题目内容

2.如图,某飞机在空中A处探测到它的正下方地平面上目标C,此时飞行高度AC=1 200m,从飞机上看地平面指挥台B的俯角α=30°,则飞机A与指挥台B的距离为(  )
A.1 200 mB.1 200$\sqrt{2}$ mC.1 200$\sqrt{3}$ mD.2 400 m

分析 首先根据图示,可得∠ABC=∠α=30°,然后在Rt△ABC中,用AC的长度除以sin30°,求出飞机A与指挥台B的距离为多少即可.

解答 解:∵∠ABC=∠α=30°,
∴AB=$\frac{AC}{sin30°}$=$\frac{1200}{\frac{1}{2}}$=2400(m),
即飞机A与指挥台B的距离为2400m.
故选:D.

点评 此题主要考查了解直角三角形的应用-仰角俯角问题,要熟练掌握,解答此题的关键是要善于读懂题意,把实际问题划归为直角三角形中边角关系问题加以解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网