题目内容

16.【阅读材料】已知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切圆O的半径为r,连接OA,OB,OC,△ABC被划分为三个小三角形.
∵S=S△OBC+S△OAC+S△OAB=$\frac{1}{2}$BC•r+$\frac{1}{2}$AC•r+$\frac{1}{2}$AB•r=$\frac{1}{2}$ar+$\frac{1}{2}$br+$\frac{1}{2}$cr=$\frac{1}{2}$(a+b+c)r.
∴r=$\frac{2S}{a+b+c}$.
(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;
(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC各边分别相切于D、E和F,已知AD=3,BD=2,求r的值.

分析 (1)已知已给出示例,我们仿照例子,连接OA,OB,OC,OD,则四边形被分为四个小三角形,且每个三角形都以内切圆半径为高,以四边形各边作底,这与题目情形类似.仿照证明过程,r易得.
(2)如图3,连接OE、OF,则四边形OECF是正方形,OE=EC=CF=FO=r,解直角三角形求得结果.

解答 解:(1)如图2,连接OA、OB、OC、OD.

∵S=S△AOB+S△BOC+S△COD+S△AOD=$\frac{1}{2}$ar$+\frac{1}{2}$br$+\frac{1}{2}$cr$+\frac{1}{2}$dr=$\frac{1}{2}$(+b+c+d)r,
∴r=$\frac{2S}{a+b+c+d}$;

(2)如图3连接OE、OF,则四边形OECF是正方形,

OE=EC=CF=FO=r,
在Rt△ABC中,AC2+BC2=AB2
(3+r)2+(2+r)2=52
r2+5r-6=0,
解得:r=1.

点评 本题考查了学生的学习、理解、创新新知识的能力,同时考查了解直角三角形及等腰梯形等相关知识.这类创新性题目已经成为新课标热衷的考点,是一道值得练习的基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网